CDF tests for nonstandard top quark production and decay

Gueorgui Velev

Outline

- This talk contains three independent CDF tests for non-standard top
 - ➤Top quark p_T spectrum measurement: dσ(tt)/dp_T
 - >W boson helicity in top decays
 - ➤ check for the top like particle with charge +4/3

Top Production at the Tevatron

Pair Production: pp→tt̄

Production of the single top through

Wg fusion and W * ~ 30% of $\sigma(tt)$

- ▶ BR(t Wb) \(\preceq 100 \%\)
 - ➤ Both W's decay via W →lv
 - ✓ final state: lv lvbb DILEPTON
 - ➤ One W decays via W →lv
 - ✓ final state: lv qq bb LEPTON+JETS
 - ➤ Both W's decay via W →qq
 - ✓ final state: qq qq bb ALL HADRONIC

Top Quark p_t

- > The idea is to check a number of theoretical investigations for alternative to production mechanism
- Many exotic models predict enhancement in the x-section for top with p_t>200 GeV/c
- CDF lepton plus jets events were used. Signature:
 - \rightarrow one central (-1.1< η <1.1), and Isolated high P_t>20 GeV/c lepton (e or μ)
 - \rightarrow missing E_T from the v, (E_T>20 GeV)
 - > 3 jets, $E_T^{jet} > 15 \text{ GeV}, -2.0 < \eta < 2.0$
 - > SECVTX, SLT or 4th jet, $E_{T}^{jet} > 15$ GeV, (-2.0< η <2.0),
- A kinematic fitter similar to the top mass measurement was employed: M_{top} =175 was constrained; events with χ^2 >10 are rejected. 61 events form the final sample. The estimated background contribution: 31.9±4.6 ev.
- The p_t spectrum of the fully reconstructed hadronic top decay was used.

Top Quark p_t,cont.

- Because of poor resolution and reconstruction effects the response function for every interval is introduced
- The unbinned LH fit to the measured p_t distribution is performed.
- ➤ The free LH parameters (R₁,...,R₄₎ are the fraction of top quarks produced in true bins 1-4
- Performing KSM, the probability to observe a difference between the two distribution as large as the one that is measured is calculated to be 5 % (1% to 9.4% when the systematic effects changes 1σ)

Top Quark p_t: result

 $R_1 + R_2 = 0.66 \pm 0.17 \text{(stat)} \pm 0.07 \text{(syst)} \text{ SM } (0.84)$ $R_4 < 0.16 \text{ at } 95\% \text{ CL} \text{ , SM } (0.025)$

p_T Bin	Parameter	Measurement	Standard Model Expectation
$0 \le p_T < 75 \text{ GeV}$	R_1	$0.21^{+0.22}_{-0.21}(\text{stat})^{+0.10}_{-0.08}(\text{syst})$	0.41
$75 \le p_T < 150 \text{ GeV}$	R_2	$0.45^{+0.23}_{-0.23}(\text{stat})^{+0.04}_{-0.07}(\text{syst})$	0.43
$150 \le p_T < 225 \text{ GeV}$	R_3	$0.34^{+0.14}_{-0.12}(\text{stat})^{+0.07}_{-0.05}(\text{syst})$	0.13
$225 \le p_T < 300 \text{ GeV}$	R_4	$0.000^{+0.031}_{-0.000}(\text{stat})^{+0.024}_{-0.000}(\text{syst})$	0.025
$0 \le p_T < 150 \text{ GeV}$	$R_1 + R_2$	$0.66^{+0.17}_{-0.17}(\text{stat})^{+0.07}_{-0.07}(\text{syst})$	0.84

Run II: 3-4% accuracy!

CDF PRELIMINARY

One Standard Deviation Confidence Intervals

W Helicity in Top Decays

- SM top spin 1/2, V-A coupling
 - ➤ top quark decays to longitudinal (h_W=0) or left-handed (h_W=-1) W bosons

$$F_0 = \frac{\Gamma(h_w = 0)}{\Gamma(h_w = 0) + \Gamma(h_w = -1)} = \frac{1}{1 + 2M_w^2 / m_{top}^2} = 0.70 \text{ for } 175 \text{ GeV/c}^2$$

- ➤ The idea is to use F₀ as a probe for non-universal t-W-b couplings
- \triangleright Lepton p_t distribution in t \rightarrow blv distinguishes the helicity states.
 - \rightarrow h_W = 0 corresponds to the hard p_t
 - \rightarrow h_W = -1 corresponds to the soft p_t
- CDF lepton plus jets events were used. Additional requirements:
 - ➤ at least one jet must be tagged by SECVTX
 - > SLT sample has to have 4th jet, $E_{T}^{jet} > 8$ GeV, (-2.4< η <2.4)
 - ightharpoonup notag sample, at least 4 jets, $E_{T}^{jet} > 15$ GeV, (-2.0< η <2.0)
 - ➤ total amount of leptons is 94

W Helicity in Top Decays, F₀

- Dilepton sample of 7 events generates 14 leptons
- > Total number of cases is 108.
- The unbinned LH fit was performed to compare data and MC

 $F_0 = 0.91 \pm 0.37 \text{(stat)} \pm 0.13 \text{(syst)}$

 \triangleright Run II: F₀ - 4% accuracy

W Helicity in Top Decays, F₊

 \triangleright A check for V+A coupling (F_{+1}) component was done by repeating the fit with F_0 constrained to SM value of 0.7

 $F_{+1}=0.11\pm0.15(stat)\pm0.06(syst)$

"Top" with charge +4/3

In case of SM ttbar events we have:

$$\rightarrow$$
 t \rightarrow W+b and t \rightarrow W-b

- > At the first top Thinkshop (Ernest Ma), it was announced the idea of alternative interpretation of the Tevatron top events (UCRHEP-T237)
- The idea is that the signal could be due to quark with charge 4/3 and mass around 175 GeV/c² which decays X → W⁺b
- I did an attempt to check this idea and to determine which hypothesis is more probable using CDF Run 1 data.

> Single and double tag data samples from Run1 were used. The jet

charge is defined as

$$C = \frac{\sum_{i=1}^{ntracks} q_i \cdot (\vec{p}_i \cdot \vec{e}_i)^k}{\sum_{i=1}^{ntracks} (\vec{p}_i \cdot \vec{e}_i)^k}$$

b-jet

Event selection

- From the mass fitter we used only combinations in which the tagged jet corresponded to b-quark.
- For the tagged events we applied the selection

min($| m_{top} - 175 | / \sigma_{parabolic}$) to increase the probability to pick up the correct combination

- We create a distribution Q=±q_{lepton}xq_b
 (+ when tagged jet is in hadronic part,
 when tagged jet is in the leptonic part).
- We used KS test to check both hypotheses

Run I result

top-quark physics for Run H & beyond

Run I result, cont.

- Assuming MC model is correct, the probability to observe a difference between the two distribution as large as the one that is measured is calculated to be 41.8% (4.6%) in case of SM (nonSM). The similar numbers were obtained from single SVX data 46.3% (7.1%).
- ➤ To convert these numbers into probability ensemble tests (pseudo experiments (PE)) are performed. The result is:

$$\frac{P_{SM}^{doubleSVX}}{P_{nonSM}^{doubleSVX}} = 2.4$$

➤ Run II: 200 double SVX tagged events. We can check the hypothesis charge +2/3 vs charge +4/3 on the level of 1%.

Run II

Summary

- All three measurements are more likely to be consistent with the SM predictions but the limited statistic still keeps a room for surprises.
- Run II data will give us possibility to perform precision measurements, increasing ~ 100 times the data samples.

